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Collisions - basic concepts
Single scattering center

Area At

Area σT

Length L 

Box (volume ) with a 
scattering center

LAt

Probability of test particle making 
a single collision per unit length 

P = σT /(AtL)

Dawson, pp 22-23
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Single scattering center Multiple scattering centres

Cross section

Area At

Area σT

Length L 

Box (volume ) with a 
scattering center

LAt

Probability of test particle making 
a single collision per unit length 

P = σT /(AtL)

Area At

Length L 

Area At

Probability of test particle making 
a single collision per unit length 

P = σTn

The total cross section in this 
model is corresponds to σT

Collisions - basic concepts

Dawson, pp 22-23
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Mean free path  (thin box )λ L = dx

Collisions - basic concepts

Number of scattering centres: 
 

Fraction of the thin box blocked 
by scattering centres: 

 

Particle flux after slab 

 

Typical length: 

nAtdx

ndxσT

If = Ii(1 − nσTdx) ⇒
dI
dx

= − InσT

λ = 1/(nσT)

Chen, pp 157
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Mean free path  (thin box )λ L = dx Collision frequency

Collisions - basic concepts

Number of scattering centres: 
 

Fraction of the thin box blocked 
by scattering centres: 

 

Particle flux after slab 

 

Typical length: 

nAtdx

ndxσT

If = Ii(1 − nσTdx) ⇒
dI
dx

= − InσT

λ = 1/(nσT)

Average time between collisions 
 

Collisions per unit time 
 

Note: 
v is the relative velocity between 
particle and scattering centres 

Or v is the velocity in the frame 
where the scattering center is 
fixed.

ΔT = 1/(vnσT)

ν = vnσT

Chen, pp 157 Dawson, pp 22-23
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Mean free path  (thin box )λ L = dx Collision frequency

Average collision frequency

Collisions - basic concepts

Number of scattering centres: 
 

Fraction of the thin box blocked 
by scattering centres: 

 

Particle flux after slab 

 

Typical length: 

nAtdx

ndxσT

If = Ii(1 − nσTdx) ⇒
dI
dx

= − InσT

λ = 1/(nσT)

Average time between collisions 
 

Collisions per unit time 
 

Note: 
v is the relative velocity between 
particle and scattering centres 

Or v is the velocity in the frame 
where the scattering center is 
fixed.

ΔT = 1/(vnσT)

ν = vnσT

The total cross section may be 
(usually is) function of v. 

Average collision frequency: 

 

•Velocity of scattering centres  
•Test particle velocities 

n⟨σTv⟩ = ∫ f(v)σT(v − v0) |v − v0 |dv

f(v)
v0

Chen, pp 157 Dawson, pp 22-23

Dawson, p 23
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Collisions - differential cross section

• Consider collision experiment where detector measures number of particles per unit time, 
, scattered into an element of solid angle  in the direction  

• This number is proportional to the incident flux of particles  defined as the number of 
particles per unit time crossing a unit area normal to the direction of incidence. 

• The differential cross section is defined as: 

• Total cross section obtained by integrating over all solid angles:

NΩdΩ dΩ = sin(θ)dθdφ (θ, φ)

Fi

dσd

dΩ
=

NΩ

Fi

σT = ∫
2π

0
dφ∫

π

0
dθ

dσd

dΩ
sin(θ)
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Collisions - relation with total cross section

Scattering by a classical potential

Scattering 
potential center

Angle of scattering 
determined by impact 
parameter b(θ)

Explicit formula for differential cross section

Number of particles crossing  and  per unit time 
=  

Number of particles crossing  and  

Hence:  

b b + db

θ θ + dθ

NΩdΩ = NΩ sin(θ)dθdφ = Fibdbdφ

dσ
dΩ

≡
NΩ

Fi
=

b
sin(θ) ( db

dθ )
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Momentum transfer cross section

θ pz,f = pz,i [1 − cos(θ)] ⇒ Δpz = [1 − cos(θ)]

Average fraction of momentum transferred to the target for a single particle (assume cylindrical symmetry):

1
σT ∫ [1 − cos(θ)] bdb =

1
σT ∫ [1 − cos(θ)] σ(θ)dΩ

Collision between particle and scattering center in center of mass frame 
(assume symmetry about ):φ

Dawson, p 72



Jorge Vieira | IST 2019

Average fraction of momentum transferred to the target for a beam per unit time (assume cylindrical symmetry):

Momentum transfer cross section
Collision between particle and scattering center in center of mass frame 

(assume symmetry about ):φ

θ pz,f = pz,i [1 − cos(θ)] ⇒ Δpz = [1 − cos(θ)]

∫ Fidσd

σT ∫ [1 − cos(θ)] σ(θ)dΩ = Fi ∫ [1 − cos(θ)] σ(θ)dΩ

Dawson, p 72
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Diffusion in partially ionised gases

Configuration and validity

• Electrons/ions flow through a neutral gas 

• Collisions with neutrals are dominant 

• Elastic collisions 

• Collision frequency is independent of velocity 

• What is the physical law that governs the diffusion 
of (charged) particles through a neutral gas?

Dawson, p 75-81
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Diffusion in partially ionised gases

Physical picture 1D

What is the flux of electrons or ions through S?

x̄ x̄

nn1 n2
S

n2 = n +
dn
dx

x̄n1 = n −
dn
dx

x̄

Validity of approach
• Elastic collisions   
• Collisions do not depend on velocity 
• Collisions with neutrals are dominant (weakly 

ionised plasma) 

Model (picture on the right)
• Consider thin plasma slab.  
• What is the flux of electrons through S? 

Generic considerations

Dawson, p 75-81
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Diffusion in partially ionised gases

Diffusion coefficient

From kinetic theory the number of particles crossing a 
plane per unit time is (Maxwell Boltzmann):

1
4

nv̄

Thus the flux of particles through S is:

Γ =
1
4

n1v̄1 −
1
4

n2v̄2 = −
1
2

∂n
∂x

x̄v̄

D = −
1
3

λv̄ =
v̄2

3νc
=

kbT
mνc

Diffusion equations

Γ = − D∇n

∇ ⋅ Γ = −
∂n
∂t

∂n
∂t

= D∇2n

Diffusion equation

If  varies with positionD

Γ = − ∇(Dn)

Fick’s Law

Dawson, p 75-81
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Diffusion in partially ionised gases

Mobility - generic considerations

• Elastic collisions 
• Collisions with neutrals dominate 
• An electric field exists 
• Steady state where collisional drag 

compensates E field 
• What is the average drift motion of an 

electron through the neutrals?

Dawson, p 75-81
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Diffusion in partially ionised gases

Mobility Relation between mobility and diffusion

m
dv
dt

− αν′�cmv = m
dv
dt

− νcmv = − qE

In an external electric field E electron gains energy 
in the direction of -E. The electron also loses a 
fraction of its momentum at each collision. The 

equation of motion is thus:

In a steady state

v = −
qE
νcm

= − μE

 is the mobilityμ

The quotient  obeys the Maxwell relation:D/μ

D
μ

=
KbT

e

Equilibirum: currents due to the drift cancel the 
currents due to diffusion.

Mobility and diffusion coefficients can be 
calculated by using kinetic theory by performing 

integrals over the distribution function.

Dawson, p 75-81
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Ambipolar diffusion

Physical scenario

•Plasma in a container 

•Initial ion density is equal to initial electron density 

•Electron temperature is larger than ion 
temperature 

•Because  electrons are lost to the walls of 
the container 

•This sets up an electric field towards the wall that 
slows down electron and increases the rate of ion 
loss. 

•A steady state is formed. 

•How can we quantify this phenomenon?

De > Di

Dawson, p 82-86
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Ambipolar diffusion

Self-generated electric field 

Assume steady state where  then:Γe = Γi = Γa

Γa = ( Diμe + Deμi

μi + μe )∇n = − Da ∇n

Fluxes for ions and electrons:

Γe,i = − De,i ∇ne,i ∓ μe,iEne,i

 (ambipolar diffusion coefficient) is also given by:Da

Da = Di (1 +
Te

Ti )

Self-generated electric field 

E =
∇n
n ( Di − De

μi + μe ) ≃
∇n
n

kbTe

e

Dawson, p 82-86
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Ambipolar diffusion

E =
∇n
n ( Di − De

μi + μe ) ≃
∇n
n

kbTe

e

Validity of quasi neutrality assumption

∇ ⋅ E = e
ni − ne

ϵ0
≃

E
L

Consider Poisson equation

L is the characteristic length where ni ≠ ne

E = Le
ni − ne

ϵ0
= −

∇n
n

kbTe

e
≃

kbT
eL

Thus:

ni − ne

L
≪ −

λ2
D

L2

Self-generated electric field 

E =
∇n
n ( Di − De

μi + μe ) ≃
∇n
n

kbTe

e

Dawson, p 82-86
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Example of ambipolar diffusion in 1D

Decay of fundamental mode

Ambipolar diffusion: density evolution

∂n
∂t

= Da ∇2n

can be solved using separation of variables 
subject to suitable boundary conditions

n = n0 exp (−
t
td ) cos ( πx

2L )
td = 4L2/(πD2

a)

Plasma slab between -L and L

left wall right wall

example

Chen, pp. 160-163
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Example of ambipolar diffusion in 1D

Decay of higher order modes

Ambipolar diffusion: density evolution

∂n
∂t

= Da ∇2n

can be solved using separation of variables 
subject to suitable boundary conditions

td = ( L
(m + 1/2)π )

2 1
Da

see detailed calculations Chen 162 and 163

left wall right wall

example

key point is:  
fundamental mode is the slowest to diffuse 

Chen, pp. 160-163
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Example of ambipolar diffusion in 1D
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Ambipolar diffusion: density evolution
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∂t
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can be solved using separation of variables 
subject to suitable boundary conditions
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2 1
Da
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•The plasma can be maintained by injecting 
plasma or by ionisation processes. 

• Describing the process requires addition 
of a source term to Continuity equation: 

•Constant ionisation and in steady state:

Stationary solutions: localised ionisation source

Ambipolar diffusion: density evolution

∂n
∂t

− Da ∇2n = S(r)

Note

∇2n = −
Z
Da

n

•The ionisation rate  is associated with 
ionisation by hot electrons at the tail of 
distribution 

•ionisation rate is , where  is the 
mean ionisation frequency that can be 
found by integrating the ionisation cross 
section

Z

Z = n νi νi

Chen, pp. 165-167
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•The plasma can be maintained by injecting 
plasma or by ionisation processes. 

• Describing the process requires addition 
of a source term to Continuity equation: 

•Constant ionisation and in steady state:

Stationary solutions: localised ionisation source

Ambipolar diffusion: density evolution

∂n
∂t

− Da ∇2n = S(r)

left wall right wall

Example: plane source

∇2n = −
Z
Da

n
n = n0 (1 −

|x |
L )

∇2n = −
Q
Da

δ(0)

line 
source

Chen, pp. 165-167



Jorge Vieira | IST 2019

•Electron ion recombination can lower the plasma 
density 

•Recombination between electron and ion requires at 
least one additional particle to conserve momentum 

•Examples 

- Photon emission 

- Neutral particle (3 body recombination) 

- Dissociation product - dissociative recombination

Recombination

Recombination processes Model

M+ + e → M + hν

M+ + M + e → M + M

AB+ + e → A + B

•Loss term proportional to  

•Continuity equation reads (neglect diffusion): 

•  is volume recombination coefficient [ ] 

•Solution is: 

•Distinction between decay and diffusion is 
possible because for large t !

nine = n2

α m3/s

n ∝ 1/(αt)

∂n
∂t

= − |S(r) |

∂n
∂t

= − αn2

1
n(r, t)

=
1

n0(r)
+ αt

Chen, pp. 167-169


