Plasma Physics and Technology Diffusion in weakly ionised plasmas

Mestrado Integrado em Engenharia Física Tecnológica

Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico

Dawson, pp 22-23

Dawson, pp 22-23

Multiple scattering centres

Probability of test particle making a single collision per unit length

$$P = \sigma_T n$$

Dawson, pp 22-23

$$P = \sigma_T n$$

Cross section

The total cross section in this model is corresponds to σ_T

Mean free path λ (thin box L = dx)

Number of scattering centres: $nA_t dx$

Fraction of the thin box blocked by scattering centres: $ndx\sigma_T$

Particle flux after slab

$$I_f = I_i(1 - n\sigma_T dx) \Rightarrow \frac{dI}{dx} = -In\sigma_T$$

Typical length:

$$\lambda = 1/(n\sigma_T)$$

Chen, pp 157

Mean free path λ (thin box L = dx)

Number of scattering centres: $nA_t dx$

Fraction of the thin box blocked by scattering centres: $ndx\sigma_T$

Particle flux after slab

$$I_f = I_i(1 - n\sigma_T dx) \Rightarrow \frac{dI}{dx} = -In\sigma_T$$

Typical length:

$$\lambda = 1/(n\sigma_T)$$

Chen, pp 157

 $\Delta T = 1/(vn\sigma_T)$ Collisions per unit time $\nu = \nu n \sigma_T$ Note:

fixed.

Dawson, pp 22-23

Collision frequency

- Average time between collisions

- v is the relative velocity between particle and scattering centres
- **Or** v is the velocity in the frame where the scattering center is

Mean free path λ (thin box L = dx)

Number of scattering centres: $nA_t dx$

Fraction of the thin box blocked by scattering centres: $ndx\sigma_T$

Particle flux after slab

$$I_f = I_i(1 - n\sigma_T dx) \Rightarrow \frac{dI}{dx} = -In\sigma_T$$

Typical length:

$$\lambda = 1/(n\sigma_T)$$

Chen, pp 157

Collision frequency Average time between collisions $\Delta T = 1/(vn\sigma_T)$ Collisions per unit time $\nu = \nu n \sigma_T$ Note: v is the relative velocity between particle and scattering centres **Or** v is the velocity in the frame where the scattering center is

fixed.

Dawson, pp 22-23

Average collision frequency

The total cross section may be (usually is) function of v.

Average collision frequency: $n\langle \sigma_T v \rangle = \int f(\mathbf{v}) \sigma_T(\mathbf{v} - \mathbf{v}_0) |\mathbf{v} - \mathbf{v}_0| d\mathbf{v}$

- •Velocity of scattering centres $f(\mathbf{v})$
- •Test particle velocities \mathbf{v}_0

Dawson, p 23

Collisions - differential cross section

- particles per unit time crossing a unit area normal to the direction of incidence.
- The differential cross section is defined as:

Total cross section obtained by integrating over all solid angles:

$$\sigma_T = \int_0^{2\pi} d\varphi \int_0^{\pi} d\varphi$$

 Consider collision experiment where detector measures number of particles per unit time, $N_{\Omega}d\Omega$, scattered into an element of solid angle $d\Omega = \sin(\theta)d\theta d\phi$ in the direction (θ, ϕ)

• This number is proportional to the incident flux of particles F_i defined as the number of

 $\frac{d\theta}{d\Omega} \frac{d\theta}{d\Omega} \sin(\theta)$

Collisions - relation with total cross section

$$\frac{d\sigma}{\equiv} \frac{N_{\Omega}}{F_i} = \frac{M_{\Omega}}{F_i}$$

Explicit formula for differential cross section

Number of particles crossing b and b + db per unit time Number of particles crossing θ and $\theta + d\theta$

> Hence: $N_{\Omega}d\Omega = N_{\Omega}\sin(\theta)d\theta d\phi = F_{i}bdbd\phi$

Momentum transfer cross section

Collision between particle and scattering center in center of mass frame (assume symmetry about φ):

Average fraction of momentum transferred to the target for a single particle (assume cylindrical symmetry):

$$\frac{1}{\sigma_T} \int \left[1 - \cos(\theta) \right] b db = \frac{1}{\sigma_T} \int \left[1 - \cos(\theta) \right] \sigma(\theta) d\Omega$$

Dawson, p 72

$$p_{z,f} = p_{z,i} \left[1 - \cos(\theta) \right] \Rightarrow \Delta p_z = \left[1 - \cos(\theta) \right]$$

Momentum transfer cross section

Collision between particle and scattering center in center of mass frame (assume symmetry about φ):

Average fraction of momentum transferred to the target for a beam per unit time (assume cylindrical symmetry):

$$\frac{\int F_i d\sigma_d}{\sigma_T} \int \left[1 - \cos(\theta)\right] \sigma(\theta) d\Omega = F_i \int \left[1 - \cos(\theta)\right] \sigma(\theta) d\Omega$$

Dawson, p 72

$$p_{z,f} = p_{z,i} \left[1 - \cos(\theta) \right] \Rightarrow \Delta p_z = \left[1 - \cos(\theta) \right]$$

- Electrons/ions flow through a neutral gas
- Collisions with neutrals are dominant
- Elastic collisions
- Collision frequency is independent of velocity
- What is the physical law that governs the diffusion of (charged) particles through a neutral gas?

Dawson, p **75-81**

Configuration and validity

Dawson, p **75-81**

Diffusion coefficient

From kinetic theory the number of particles crossing a plane per unit time is (Maxwell Boltzmann):

$$\frac{1}{4}n\overline{v}$$

Thus the flux of particles through S is:

$$\Gamma = \frac{1}{4}n_1\bar{\nu}_1 - \frac{1}{4}n_2\bar{\nu}_2 = -\frac{1}{2}\frac{\partial n}{\partial x}\bar{x}\bar{\nu}$$
$$D = -\frac{1}{3}\lambda\bar{\nu} = \frac{\bar{\nu}^2}{3\nu_c} = \frac{k_bT}{m\nu_c}$$

Dawson, p 75-81

Fick's Law $\Gamma = -D\nabla n$ $\nabla \cdot \Gamma = -\frac{\partial n}{\partial t}$

Diffusion equation

 $\frac{\partial n}{\partial t} = D \nabla^2 n$

If D varies with position

 $\Gamma = -\nabla(Dn)$

Dawson, p **75-81**

Mobility - generic considerations

- Steady state where collisional drag
- What is the average drift motion of an

In an external electric field E electron gains energy in the direction of -E. The electron also loses a fraction of its momentum at each collision. The equation of motion is thus:

$$m\frac{d\mathbf{v}}{dt} - \alpha\nu_c' m\mathbf{v} = m\frac{d\mathbf{v}}{dt} - \nu_c m\mathbf{v} = -q\mathbf{E}$$

In a steady state

$$\mathbf{v} = -\frac{q\mathbf{E}}{\nu_c m} = -\mu \mathbf{E}$$

 μ is the mobility

Dawson, p **75-81**

Relation between mobility and diffusion

The quotient D/μ obeys the Maxwell relation:

$$\frac{D}{\mu} = \frac{K_b T}{e}$$

Equilibirum: currents due to the drift cancel the currents due to diffusion.

Mobility and diffusion coefficients can be calculated by using kinetic theory by performing integrals over the distribution function.

Ambipolar diffusion

- Plasma in a container
- Initial ion density is equal to initial electron density
- Electron temperature is larger than ion temperature
- •Because $D_e > D_i$ electrons are lost to the walls of the container
- This sets up an electric field towards the wall that slows down electron and increases the rate of ion loss.
- A steady state is formed.
- How can we quantify this phenomenon?

Dawson, p 82-86

Physical scenario

Ambipolar diffusion

Self-generated electric field

Fluxes for ions and electrons:

$$\Gamma_{e,i} = -D_{e,i} \nabla n_{e,i} \mp \mu_{e,i} E n_{e,i}$$

Assume steady state where $\Gamma_e = \Gamma_i = \Gamma_a$ then:

$$\Gamma_a = \left(\frac{D_i \mu_e + D_e \mu_i}{\mu_i + \mu_e}\right) \nabla n = -D_a \nabla n$$

 D_a (ambipolar diffusion coefficient) is also given by:

$$D_a = D_i \left(1 + \frac{T_e}{T_i} \right)$$

Dawson, p 82-86

Self-generated electric field

$$\mathbf{E} = \frac{\nabla n}{n} \left(\frac{D_i - D_e}{\mu_i + \mu_e} \right) \simeq \frac{\nabla n}{n} \frac{k_b T_e}{e}$$

Ambipolar diffusion

E =
$$\frac{\nabla n}{n} \left(\frac{D_i - D_e}{\mu_i + \mu_e} \right) \simeq \frac{\nabla n}{n} \frac{k_b T_e}{e}$$

Dawson, p 82-86

Validity of quasi neutrality assumption

Consider Poisson equation

$$\nabla \cdot \mathbf{E} = e \frac{n_i - n_e}{\epsilon_0} \simeq \frac{E}{L}$$

L is the characteristic length where $n_i \neq n_e$

$$E = Le \frac{n_i - n_e}{\epsilon_0} = -\frac{\nabla n \ k_b T_e}{n \ e} \simeq \frac{k_b T}{eL}$$

Thus:

$$\frac{n_i - n_e}{L} \ll -\frac{\lambda_D^2}{L^2}$$

Example of ambipolar diffusion in 1D

Ambipolar diffusion: density evolution

$$\frac{\partial n}{\partial t} = D_a \nabla^2 n$$

can be solved using separation of variables subject to suitable boundary conditions

Decay of fundamental mode

Plasma slab between -L and L

$$n = n_0 \exp\left(-\frac{t}{t_d}\right) \cos\left(\frac{\pi x}{2L}\right)$$
$$t_d = 4L^2/(\pi D_a^2)$$

Chen, pp. 160-163

Example of ambipolar diffusion in 1D

Ambipolar diffusion: density evolution

$$\frac{\partial n}{\partial t} = D_a \nabla^2 n$$

can be solved using separation of variables subject to suitable boundary conditions

Decay of higher order modes

see detailed calculations Chen 162 and 163

key point is: fundamental mode is the slowest to diffuse

$$t_d = \left(\frac{L}{(m+1/2)\pi}\right)^2 \frac{1}{D_a}$$

Chen, pp. 160-163

Example of ambipolar diffusion in 1D

Ambipolar diffusion: density evolution

$$\frac{\partial n}{\partial t} = D_a \nabla^2 n$$

can be solved using separation of variables subject to suitable boundary conditions

Decay of higher order modes

see detailed calculations Chen 162 and 163

key point is: fundamental mode is the slowest to diffuse

$$_{d} = \left(\frac{L}{(m+1/2)\pi}\right)^{2} \frac{1}{D_{a}}$$

Chen, pp. 160-163

Stationary solutions: localised ionisation source

Chen, pp. 165-167

Stationary solutions: localised ionisation source

Chen, pp. 165-167

Recombination processes

• Electron ion recombination can lower the plasma density 210

$$\frac{\partial n}{\partial t} = -|S(\mathbf{r})|$$

 Recombination between electron and ion requires at least one additional particle to conserve momentum

• Examples

- Photon emission

$$M^+ + e \rightarrow M + h\nu$$

- Neutral particle (3 body recombination)

$$M^+ + M + e \rightarrow M + M$$

- Dissociation product - dissociative recombination

$$AB^+ + e \rightarrow A + B$$

Chen, pp. 167-169

Model

- •Loss term proportional to $n_i n_e = n^2$
- •Continuity equation reads (neglect diffusion):
- α is volume recombination coefficient $[m^3/s]$ $\frac{\partial n}{\partial t} = -\alpha n^2$
- Solution is:

$$\frac{1}{n(\mathbf{r},t)} = \frac{1}{n_0(\mathbf{r})} + \alpha t$$

 Distinction between decay and diffusion is possible because for large t $n \propto 1/(\alpha t)!$

