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Collisions - basic concepts

Single scattering center

Box (volume LA,) with a
scattering center

Probability of test particle making
a single collision per unit length

Dawson, pp 22-23 Jorge Vieira | IST 2019



Collisions - basic concepts

Single scattering center Multiple scattering centres

Box (volume LA,) with a
scattering center

Probability of test particle making Probability of test particle making
a single collision per unit length a single collision per unit length

P=oc./(AL) P =om

Dawson, pp 22-23 Jorge Vieira | IST 2019



Collisions - basic concepts

Single scattering center Multiple scattering centres

Box (volume LA,) with a
scattering center

Cross section

The total cross section In this
model Is corresponds to o

Probability of test particle making Probability of test particle making
a single collision per unit length a single collision per unit length

P=oc./(AL) P =om
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Collisions - basic concepts

Mean free path A (thin box L = dx)

Numlber of scattering centres:
nA.dx

Fraction of the thin box blocked
by scattering centres:

ndxoy

Particle flux after slab

dl

Typical length:
A = 1/(noy)

Chen, pp 157

Jorge Vieira | IST 2019



Collisions - basic concepts

Mean free path A (thin box L = dx) Collision frequency

Numlber of scattering centres: . -
A Average time between collisions
nA.dx
! AT = 1/(vnoy)
Fraction of the thin box blocked Collisi L
by scattering centres: OHISIONs per unit ime
Particle flux after slab Note:
Vv IS the relative velocity between
Iy = I(1 — nordx) = il Ino; | | particle and scattering centres
Typical length: Or v is the velocity in the frame
where the scattering center is
A = 1/(noy) fixed.
Chen, pp 157 Dawson, pp 22-23

Jorge Vieira | IST 2019



Collisions - basic concepts

Mean free path A (thin box L = dx)

Numlber of scattering centres:
nA.dx

Fraction of the thin box blocked
by scattering centres:

ndxoy

Particle flux after slab

dl

Typical length:
A = 1/(noy)

Chen, pp 157

Average time between collisions
AT = 1/(vno;)

Collisions per unit time
U = VNoy

Note:

Vv IS the relative velocity between
particle and scattering centres

Or v is the velocity in the frame
where the scattering center is
fixed.

Dawson, pp 22-23

Average collision frequency

The total cross section may be
(usually is) function of v.

Average collision frequency:

n(opv) = J fW)op (v —vy) | v—vy|dv

e\elocity of scattering centres f(Vv)
o [est particle velocities v,

Dawson, p 23
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Collisions - differential cross section

e (Consider collision experiment where detector measures number of particles per unit time,
Nqd€2, scattered into an element of solid angle d€2 = sin(0)dOdg in the direction (6, @)

e This number is proportional to the incident flux of particles F; defined as the number of
particles per unit time crossing a unit area normal to the direction of incidence.

e [he differential cross section is defined as:

ddd B NQ

d€Q F;

L

e [otal cross section obtained by integrating over all solid angles:

Zﬂd " 109% 0)
N RS
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Collisions - relation with total cross section

Scattering by a classical potential Explicit formula for differential cross section

Scattering

potential center Number of particles crossing b and b + db per unit time

Number of particles crossing @ and 8 + df

Hence:

Angle of scattering
determined by impact
parameter b(6)

altar
Thomton & Rex

sin(f) \ do
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Momentum transfer cross section

Collision between particle and scattering center in center of mass frame
(assume symmetry about @):

P.f =D [1 — cos(6’)] = Ap, = [1 — 008(6’)]

Average fraction of momentum transferred to the target for a single particle (assume cylindrical symmetry):

1 1
—I 1 — cos(0)| bdb = —J 1 — cos(6)| 6(0)d

% %
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Momentum transfer cross section

Collision between particle and scattering center in center of mass frame
(assume symmetry about @):

P.f =D [1 — cos(6’)] = Ap, = [1 — 008(6’)]

Average fraction of momentum transferred to the target for a beam per unit time (assume cylindrical symmetry):

j Fdo,

%

J 1 — cos(0)| 6(0)dQ = FiJ 1 — cos(0)| 6(0)dQ
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Diffusion in partially ionised gases

Configuration and validity

- Electrons/ions flow through a neutral gas

- Collisions with neutrals are dominant

» Elastic collisions

- Collision frequency is independent of velocity

- What is the physical law that governs the diffusion
of (charged) particles through a neutral gas”

Dawson, p 75-81 Jorge Vieira | IST 2019



Diffusion in partially ionised gases

Validity of approach
e Elastic collisions
e Collisions do not depend on velocity

e Collisions with neutrals are dominant (weakly
ionised plasma)

Model (picture on the right)
 Consider thin plasma slab.

- What is the flux of electrons through S?

What is the flux of electrons or ions through S?
X X
<€ > |€ >
S
N1 N No
> <€
dn dn
= n X n,=n- X
dx : dx

Dawson, p 75-81
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Diffusion in partially ionised gases

plane per unit time is (Maxwell Boltzmann):

1 _
—ny
4

Thus the tlux of particles through S is:

. | | 1 on __
= —N\V; — =NV, = XV
47 47 2 ox
1 ¥ kT
D=——}p=— =
3 v, mu,

From kinetic theory the number of particles crossing a

Dawson, p 75-81

|7

Diffusion equations

Fick’s Law
I'=—DVn
on
V.T =
ot

Ditffusion equation

on ,
—=DV*°n
ot

if D varies with position

I'=—V(Dn)

Jorge Vieira | IST 2019



Diffusion in partially ionised gases

Mobility - generic considerations

- Elastic collisions

- Collisions with neutrals dominate

* An electric field exists

- Steady state where collisional drag
compensates E field

- What is the average drift motion of an
electron through the neutrals?
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Diffusion in partially ionised gases

Relation between mobility and diffusion

In an external electric field E electron gains energy The quotient D/u obeys the Maxwell relation:
in the direction of -E. The electron also loses a
fraction of its momentum at each collision. The D KbT
equation of motion is thus: ; — o
dv , dv
m At av.my = m At Vv = — qE Equilibirum: currents due to the drift cancel the

currents due to diffusion.

In a steady state

qE Mobility and diffusion coefficients can be
vV = = — uE calculated by using kinetic theory by performing
Vem integrals over the distribution function.

U 1s the mobility

Dawson, p 75-81 Jorge Vieira | IST 2019



Ambipolar diffusion

Physical scenario

ePlasma Iin a container
e |nitial ion density is equal to Initial electron density

e -lectron temperature is larger than ion
temperature

eBecause D, > D. electrons are lost to the walls of
the container

e [his sets up an electric field towards the wall that
slows down electron and increases the rate of ion
lOSS.

e A steady state is formed.

e How can we guantity this phenomenon?

Dawson, p 82-86 Jorge Vieira | IST 2019



Ambipolar diffusion

Self-generated electric field

Fluxes for ions and electrons:

I',;=-D,;Vn,; ¥ u, ;En,;

€,

Assume steady state where ', =1, =1"_ then:

', = | | Vn=—-D_Vn

D_ (ambipolar diffusion coefficient) is also given by:

D =D, 1- T

l

Dawson, p 82-86

Self-generated electric field

n /’ti+/’te n €
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Ambipolar diffusion

Validity of quasi neutrality assumption

Consider Poisson equation

€O L
Self-generated electric field o
| s the characteristc longth where 1, & 1

- Vn ( D;—D, Vn kT,

E = ~ F_ n,—n, Vn k,T, kT
: = 1.€ = — ~ —
" Hi T e noe € n e eL
Thus:
2
R <<—/1—D
L L?
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Example of ambipolar diffusion in 1D

Ambipolar diffusion: density evolution

n_ o
— =D _V-°n
ot 1.0
can be solved using separation of variables left wall right wall
subject to suitable boundary conditions U8
__0.6
Decay of fundamental mode <
-
0.4
Plasma slab between - and L
0.2
[ TX
n=nyexp|{ —— Jcos| —
0= t; 2L *210 -0.5 0.0 0.5 1.0
X [arb. units]
t, = 4L*/(xD?)
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Example of ambipolar diffusion in 1D

Ambipolar diffusion: density evolution

o
— =D V’n
ot 1.0
can be solved using separation of variables eft wall right wall
subject to suitable boundary conditions 0.8
0.6
Decay of higher order modes <
=04
see detailed calculations Chen 162 and 163
0.2
key point is:
fundamental mode is the slowest to diffuse 0035 —05 0.0 0.5 10
2 i
I 1 X [arb. units]
td - —
m+1/2z) D,
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Example of ambipolar diffusion in 1D

Ambipolar diffusion: density evolution

on ,
— =D _V-n
ot

can be solved using separation of variables
subject to suitable boundary conditions

Decay of higher order modes

see detailed calculations Chen 162 and 163

key point Is:
fundamental mode is the slowest to diffuse

. L |
““\m+1/2)x) D,

Chen, pp. 160-163

example

1.0

n [no]

left wall

0.8

0.6

’—_-~~

right wall

-0.5

0.0
X [arb. units]

0.5 1.0
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Stationary solutions: localised ionisation source

e [he plasma can be maintained by injecting
plasma or by ionisation processes.
e The ionisation rate Z is associated with
e Describing the process requires addition jonisation by hot electrons at the tail of
of a source term to Continuity equation: distribution
— — avzn = S(r) eiONisation rate is Z = n v;, where r; is the
ot mean ionisation frequency that can be
found by integrating the ionisation cross
e Constant ionisation and in steady state: section
) /
V‘n=——n
DCI

Chen, pp. 165-167 Jorge Vieira | IST 2019



Stationary solutions: localised ionisation source

Ambipolar diffusion: density evolution Example: plane source

e [he plasma can be maintained by injecting
plasma or by ionisation processes. Vin = — D_é(O)
1.0;— @ I
right wall
e Describing the process requires addition 0.8 cre
of a source term to Continuity equation:
_ 0.6
P <
n -
— —D_V?n = S(r) o4 /,
ot ine
0.2
source
e Constant ionisation and in steady state: 0.0
-1.0 -0.5 0.0 0.5 1.0
7 X [arb. units]
Ven=——n | x|
D, n=mny\ 1
L
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Recombination

e|ectron ion recombination can lower the plasma
density

M |S))
_— r
ot

e Recombination between electron and ion requires at
least one additional particle to conserve momentum

e-xamples

- Photon emission
Mt 4+e > M+ hy

- Neutral particle (3 body recombination)

M*+M+e—->M+M
- Dissociation product - dissociative recombination
ABT4+e > A+B

Chen, pp. 167-169

el OSs term proportional to n;n, = n’

e Continuity equation reads (neglect diffusion):

e @ is volume recombination coefficient [m>/s]
on
—_— = — an2
ot

e Solution is:

|
n(r,r)  ny(r)

e Distinction between decay and diffusion is
possible because for largetn o« 1/(at)!

+ at
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