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Plasma Physics and Technology
MEFT 2019/20 − EXAM I

Carefully justify your answers and present in detail all the calculations you make.

Test I: Problems 1,2,3 Test II: Problems 4,5,6. Exam: ALL Problems

1. [2 val] Consider a homogeneous, quasineutral plasma where the ions and the electrons follow a

power law (Tsallis) distribution, ne,i = n0

[
1± (α− 1)

eφ

kBTe,i

](α+1)/2(α−1)

. This distribution seems to

accurately describe the equilibrium of some regions of Saturn’s magnetosphere.

(a) [1.0 val] Show that the Debye length can be given as

1

λ2D
=

1 + α

2

(
1

λ2De
+

1

λ2Di

)
.

(b) [1.0 val] Discuss the screening of a test charge in the cases α→ 1 and α→ −1. 1

2. [4 val] Consider a homogeneous plasma composed of electrons (density n−, charge −e, mass me) and

positrons (density n+, charge e, mass me) only. Electron-positron plasmas exist in astrophysical condi-

tions, such as the magnetic poles of pulsars. We are interested in obtaining one-dimensional, electrostatic

oscillations supported in such a system.

(a) [1.5 val] Starting from the fluid equations for both species, show that the linearized problem (nα '
n0α + n1α, with α = ±) leads to

(ω2 − γαv2αk2)nα1 = iαk
en0α
me

E1,

where γα is a constant.

(b) [1.5 val] Assume quasineutrality (n0+ = n−0 ≡ n0) and consider that both electrons and positrons

are in thermal equilibrium, T+ = T− ≡ Te. Define the quantity δ1 = n+1 − n−1 and show that it

yields a mode of frequency

ω2 = 2ω2
pe + 3v2ek

2.

Discuss the result physically, namely the appearance of the numerical factor.

1In fact, some quantum mechanical effects take place when α→ −1.



(c) [1.0 val] Repeat the procedure on the previous point by defining the quantity N1 = n+1 + n−1 to

show that electron-positron plasmas support an acoustic mode of dispersion

ω =
√

3vek.

Explain this result physically and establish the differences with respect to the ion acoustic waves in

electron-ion plasmas.

3. [4 val] Consider electromagnetic waves propagating along k = kez in a plasma composed of electrons

and immobile ions. The plasma is magnetised with an external magnetic field along the electromagnetic

wave propagation direction, B0 = B0ez. The index of refraction, n, for these waves is given by:

n2 =
k2c2

ω2
= 1−

ω2
p/ω

2

1± Ωe/ω
, (1)

where ω is the frequency of a given mode, ωp =
√
e2n0/(meε0) the electron plasma frequency in a

plasma with uniform background density n0, Ωe = −eB0/me (< 0) is the electron cyclotron frequency,

e the elementary charge and me the electron mass. These modes are circularly polarised. The ± sign

respectively correspond to the R− and L−waves, which are right and left handed circularly polarised.

Electromagnetic waves in these conditions are traditionally characterised by several important properties,

such as cut-offs and resonances. The goal of this problem is to recover some of these properties from the

expression for the index of refraction given by Eq. (1).

(a) [1 val] Define cutoff mathematically and physically. Use Eq. (1) to determine the frequencies for

which there are cutoffs.

(b) [1 val] Define resonance mathematically and physically. Use Eq. (1) to determine the resonant

frequency. Justify the presence of this resonance.

(c) [2 val] Sketch n2(ω) clearly indicating the resonant and cutoff frequencies for the different branches

(R− and L−waves). Assume the cutoff frequencies for the R− and L− waves, ωR and ωL respectively,

follow the following relation ωL < ωp < ωR.

4. [4 val] Consider a weakly ionized plasma composed of electrons, positrons and neutrals. In order to

describe the diffusive processes, we assume that both electrons and positron collide with the neutrals at

a constant rate ν. In what follows, we neglect the motion of the neutrals.

(a) [1.5 val] Write down the condition for ambipolar diffusion to take place in a plasma in terms of the

positron and electron fluxes, ~Γ+ and ~Γ−. In the conditions of ambipolar diffusion, show that the

particle flux and the density gradient for each species is given as

~Γ = −Da
~∇n,

where Da = D− = D+ and n is the density of either species (electrons or positrons). Justify.

(b) [1.0 val] Define the total density N = n+ + n−. Show that it follows the following diffusion equation

∂N

∂t
− 2Da∇2N = 0. (2)



(c) [0.5 val] Apply a Fourier transformation to the previous result to obtain the following diffusive mode

ω = −2iDak
2.

Interpret this result physically and explain its relation with diffusive processes.

(d) [1.0 val] Consider that the plasma is contained between two infinite, parallel planes located at x = 0

and x = L. We are interested in investigating the structure of the modes. As such, we look for

solutions of the form N(x, t) =
∑
`

A`e
−iω`tf`(x). Solve the differential equation (2) to show that

f`(x) = sin(k`x), with k` = `π/L, and make use of the result in point c) to determine |ω`|, i.e. the

rate at which the modes decay in time. Sketch the first two modes (` = 1, 2) graphically and explain

the results physically.

5. [3 val] There are several descriptions for the plasma, such as the fluid and kinetic descriptions. The

goal of this exercise is to recall some of the key features associated with each of these descriptions.

(a) [1.0 val] In both the kinetic and fluid descriptions, it is often useful to linearize the Vlasov equation

or the fluid equations. The first order quantities in the linearized equations are essentially the same,

but there are key differences. Distinguish between the notion of velocity in the fluid and kinetic

description of the plasma. Does it makes sense to make perturbations to the velocity in kinetic

theory? Justify your answers.

(b) [1.0 val] The MHD description of the plasma is valid in strongly collisional regimes. One particularly

important quantity in these scenarios is the plasma electrical conductivity, σ, and resistivity, η.

Consider Newton’s law for an electron in an external electric field ~E. Find an estimate for σ and

η as a function of the electron-ion collision time, τei considering that the collisional term is given

by (dp/dt)coll = −me〈ve〉/τei, where 〈ve〉 is the average electron velocity, and me the electron mass.

Justify your derivation. [Hint: consider a steady-state situation in your calculations.]

(c) [1.0 val] Consider the plasma dielectric constant for electrostatic ion and electron waves in 1D, which

is given by:

ε = 1−
ω2
pi

k2

∫
dvx

fix
(vx − ω/k)2

−
ω2
pe

k2

∫
dvx

fex
(vx − ω/k)2

, (3)

where f(i,e)x = 1/(vi,e
√

2π) exp
[
−v2/(2v2i,e)

]
, where vi,e is the thermal speed for ions/electrons.

Solving the corresponding dispersion relation is generally complicated because of the presence of

poles that need to be treated with care. Explain, in a purely qualitative but detailed way, the

contribution of these poles to the amplitude of the plasma waves.

6. [3 val] In class, we have used fluid theory to determine the dispersion relation of electrostatic waves

in 1D. The goal of this problem is to compute a general dispersion relation for these 1D electrostatic

waves from first principles using kinetic theory and to compare with the fluid theory results.

(a) [1.0 val] Consider Eq. (3). Neglect the contribution from the poles and assume that kBTi/mi �
ω2/k2 � kBTe/me. Without evaluating the integrals from Eq. (3), re-write the dielectric constant of

the plasma in these limits by performing a suitable Tailor expansion of the arguments of each one of

the integrals in ε. [Hint: Notice that (1+x)n ' 1+nx+x2n(n−1)/2+O(x3) and retain terms up to

second order in x for the ions and zeroth order in x for the electrons (x� 1 is a small parameter)].



(b) [1.0 val] By evaluating the integrals from (a), show that the dielectric constant is given by:

ε = 1−
ωpi2

ω2

(
1 +

3k2

ω2

kBTi
mi

)
+

1

k2λ2D
, (4)

where λD is the Debye length. The following results are useful:

∫ ∞
−∞

exp(−v2/(2v2s) =
√

2πvs,∫ ∞
−∞

v2 exp(−v2/2v2s) =
√

2πv3s and

∫ ∞
−∞

exp(−v2/2v2s)/v2 = −
√

2π/vs

(c) [1.0 val] Starting from Eq. (4), write down the dispersion relation in the limits (i) kλD � 1 and

Ti → 0 and (ii) kλD � 1. Based on your previous knowledge, what waves are excited in these limits?

Comment the results based on the fluid description of the plasma.

• Constants and mathematical relations:

me = 9.1× 10−31 kg; e = 1.6× 10−19 C; ε0 = 8.854× 10−12 F/m

~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c

• Drifts and fundamental effects

λe =

√
ε0kTe
nee2

ωpe =

√
nee2

ε0me

ωce =
eB

me
rL =

v⊥
ωce

ExB drift ~vd =
~E × ~B

B2

Grad B drift ~vd =
mv2⊥
2qB

~B × ~∇B
B2

Curvature drift ~vd =
mv2‖

qB2

~ur × ~B

Rc

Fields in vacuum ~vd =

(
mv2‖ +

1

2
v2⊥

)
1

qB2

~ur × ~B

Rc

Polarization drift ~vd =
m

qB2

d

dt
~E⊥

External force drift ~vd =
1

q

~F × ~B

B2

• Fluid equations
∂

∂t
ns + ~∇ · (ns~vs) = 0

nsms

[
∂~vs
∂t

+ (~vs · ~∇)~vs

]
= qsns

[
~E + ~vs ×B

]
− ~∇Ps − νsnsms(~vs − ~v0)

Dα =
kBTα
mαν



• Maxwell’s equations

~∇ · ~B = 0 ~∇× ~B = µ0
~J +

1

c2
∂ ~E

∂t

~∇ · ~E =
ρ

ε0
~∇× ~E = −∂

~B

∂t


