Plasma Physics and Technology Electromagnetic waves in magnetised plasmas

Mestrado Integrado em Engenharia Física Tecnológica

Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico

How to study plasmas

- single particle motion
 - simple but powerful analysis
 - enables to investigate key waves and instabilities in plasma physics
- plasma kinetic equations
 - general approach
 - can be solved using computer programs

fluid equations ullet

- plasma waves and instabilities
- interaction with electromagnetic waves

Electromagnetic waves in magnetised plasmas

Nicholson, pp. 151

Relevant equations

$$\frac{e}{t} = -en_0 \mathbf{E}_1 - en_0 \mathbf{v}_e \times \mathbf{B}_0$$

$$7 \times \mathbf{E}_1 = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\mathbf{B} = \mu_0 \mathbf{j}_e + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$

$$\mathbf{j}_e = - e n_0 \mathbf{v}_e$$

Ordinary (and extraordinary waves)

Nicholson, pp. 151

Extraordinary waves - refractive index

Nicholson, pp. 152-156

Extraordinary waves - physical picture

Nicholson, pp. 152-156

- partially longitudinal, partially transverse wave
- the components of the electric field and are not in phase. Polarisation rotates in the direction of right hand rule!

Extraordinary waves - Resonances

Extraordinary waves - Cut-offs

•After a few calculations... $n^{2} \equiv \frac{k^{2}c^{2}}{\omega^{2}} = 1 + \frac{\omega_{p}^{2}}{\omega^{2}} \frac{\omega_{p}^{2} - \omega^{2}}{\omega^{2} - \omega_{III}^{2}}$

Nicholson, pp. 152-156

Ordinary and extraordinary modes - numerical simulation

Simulation parameters

- Magnetised plasma with $\omega_c = 0.5\omega_p$
- External magnetic field along \mathbf{e}_{7}
- Simulation along \mathbf{e}_{x}

Ordinary modes - numerical simulation

Simulation parameters

- Magnetised plasma with $\omega_c = 0.5\omega_p$
- External magnetic field along \mathbf{e}_{7}
- Simulation along \mathbf{e}_{x}

Extraordinary modes - numerical simulation

Simulation parameters

- Magnetised plasma with $\omega_c = 0.5\omega_p$
- External magnetic field along \mathbf{e}_{z}
- Simulation along \mathbf{e}_{x}

Extraordinary waves - puzzling question??

Simulation parameters

- Magnetised plasma with $\omega_c = 0.5\omega_p$
- External magnetic field along \mathbf{e}_z
- Simulation along \mathbf{e}_{x}

Extraordinary waves - puzzling question!

Simulation parameters

- Magnetised plasma with $\omega_c = 0.5\omega_p$
- External magnetic field along \mathbf{e}_{z}
- Simulation along \mathbf{e}_{x}

Electromagnetic wave propagation along B

Nicholson, pp. 156-161

• Two possibilities:

• $\mathbf{E} || \mathbf{B}_0$ ordinary wave

•**E** \perp **B**₀ extraordinary wave

Ordinary wave

$$\mathbf{v}_e \times \mathbf{B}_0 = \mathbf{0} \Rightarrow \boldsymbol{\omega}^2 = \boldsymbol{\omega}_p^2 + k^2 c^2$$

Same as in un-magnetised plasma!

Electromagnetic wave propagation along B

Nicholson, pp. 156-161

• Two possibilities:

• $\mathbf{E} || \mathbf{B}_0$ ordinary wave

•**E** \perp **B**₀ extraordinary wave

Ordinary wave

$$\mathbf{v}_e \times \mathbf{B}_0 = \mathbf{0} \Rightarrow \boldsymbol{\omega}^2 = \boldsymbol{\omega}_p^2 + k^2 c^2$$

Same as in un-magnetised plasma!

Propagation along B - refractive index

Nicholson, pp. 156-161

Propagation along B - refractive index

Propagation along B - refractive index

Nicholson, pp. 156-161

Cutoff: $k \rightarrow 0$

$$\omega_{R/L} = \mp \frac{\Omega_e}{2} + \left(\frac{\Omega_e^2}{4} + \omega_p^2\right)^{1/2}$$

These correspond exactly to the cutoffs for the extraordinary mode and hence the names $\omega_{R/L}$

Ordering of resonant and cut-off frequencies

- Right waves: $\omega_r > |\Omega_e|$ (recall $\Omega_e < 0!$)
- Left waves: $\omega_L > |\Omega_e|$ or $\omega_L < |\Omega_e|$ (depending on how much is the plasma frequency.

Propagation along B - whistler mode

Propagation along B - whistler mode

Propagation along B - whistler mode

Whistler

- E.g. lightning may create e.m. waves of various frequencies that may travel along different B field lines
- Single lightning can be at the origin of several whistlers
- High frequencies arrive first
- Listen to whistler using this <u>link</u>

Numerical example - plasma e.m. wave polariser

Numerical example - plasma e.m. wave polariser

Numerical example - plasma e.m. wave polariser

Propagation along B - Faraday rotation

Nicholson, p. 161

- Linearly polarised wave can be decomposed into left and right circularly polarised light
- Each component travels with different phase speeds in a magnetised plasma
- Rotation of the polarisation!
- Useful diagnostic for plasma density in astrophysics (estimates for ambient B fields) known)!

