Plasma Physics and Technology Single particle motion

Mestrado Integrado em Engenharia Física Tecnológica

How to study plasmas

- single particle motion
- simple but powerful analysis
- enables to investigate key waves and instabilities in plasma physics
- plasma kinetic equations
- general approach
- can be solved using computer programs
- fluid equations
- plasma waves and instabilities
- interaction with electromagnetic waves

why studying single particle motions is important?

-interactions between individual pairs of charged particles is small
-fields can become large when many particles interact, and lead to plasma oscillations

- fields from many particles are smooth with small fluctuations on top
-small fluctuations lead to collisions
- macroscopic smoothed fields give rise to collective motions of the plasma
-if we can neglect collisions we can treat the plasma as a collection of charged particles each moving in smoothed fields (self-consistent + external)
-much insights can be gained by analysing the single particle motion
-further analysis (not to be covered in our course): make fields self-consistent with particle motion

energy equation

work done by electric field in a charged particle

- equation of motion (non-relativistic)

$$
m \frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} t}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

- dot product with \mathbf{v}

$$
\left.m \frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} t} \cdot \mathbf{v}=\frac{1}{2} m \frac{\mathrm{~d} \mathbf{v}^{2}}{\mathrm{~d} t} \quad\right\} \quad \frac{1}{2} m \frac{\mathrm{~d} \mathbf{v}^{2}}{\mathrm{~d} t}=q \mathbf{E} \cdot \mathbf{v}
$$

$$
(\mathbf{v} \times \mathbf{B}) \cdot \mathbf{v}=0
$$

energy conservation law

- integration over particle orbit
- if $\mathbf{E}=-\nabla \Phi$

$$
\Delta \underbrace{\left(\frac{1}{2} m \mathbf{v}^{2}\right)}_{\text {kinetic energy gain }}=\int q \mathbf{E} \cdot \mathbf{v d} t=\int \underbrace{\int q \mathbf{E} \cdot \mathrm{~d} \mathbf{l}}_{\text {work done by electric field }}
$$

$$
\left(\frac{1}{2} m \mathbf{v}^{2}\right)+\underbrace{q \Phi=\mathrm{constant}}
$$

conservation of kinetic plus potential energy

motion in uniform magnetic field - cyclotron motion

- velocity component along magnetic field does not change ($v_{\|}=$constant)
- magnitude of velocity component perpendicular to magnetic field does not change, as just showed $\left(\mathbf{v}_{\perp}^{2}=\right.$ constant $)$
- motion is circular about the magnetic field
- radius of circular orbit

$$
m \frac{v_{\perp}^{2}}{r_{c}}=|q|\left|v_{\perp}\right| B \Leftrightarrow r_{c}=\frac{m\left|\mathrm{v}_{\perp}\right|}{|q| B}
$$

- angular frequency

$$
\omega_{c}=\frac{|q| B}{m}
$$

cyclotron motion - formal derivation

equation of motion

- assumptions
- B is along z
$-\mathbf{v}$ is along x and y
- from equation of motion

$$
\begin{aligned}
& \frac{\mathrm{d} v_{x}}{\mathrm{~d} t}=\omega_{c} v_{y} \\
& \frac{\mathrm{~d} v_{y}}{\mathrm{~d} t}=-\omega_{c} v_{x} \\
& \omega_{c}=\frac{q B_{z}}{m}
\end{aligned}
$$

integration of equations of motion

- defining $w=v_{x}+i v_{y}$
- leads to $\frac{\mathrm{d} w}{\mathrm{~d} t}=-i \omega_{c} w$
- integration yields

$$
w=w_{0} \exp \left(-i \omega_{c} t\right) \Rightarrow z=x+i y=i \frac{w_{0}}{\omega_{c}} \exp \left(-i \omega_{c} t\right)+z_{0}
$$

- where

$$
\begin{aligned}
& z_{0}=x_{0}+i y_{0}-i \frac{w_{0}}{\omega_{c}}
\end{aligned}
$$

cyclotron motion - formal derivation

cyclotron motion - simulation

B field out of the plane; both particles have the same mass

cyclotron motion - simulation

B field out of the plane; positive charge is more massive than negative charge

the motion of the charges produces a current that induces a magnetic field into the plane

magnetic moment

- a current loop (I is the average current, A is the area of the loop) has a dipole moment

$$
\mu=I A
$$

- average current is the average charge per unit time which passes a point in the orbit

$$
I=\frac{q}{\tau}=\frac{q \omega_{c}}{2 \pi}
$$

- area of the loop is

$$
A=\pi r_{c}^{2}=\pi \frac{m^{2} \mathbf{v}_{\perp}^{2}}{q^{2} \mathbf{B}^{2}}
$$

- thus

$$
\begin{equation*}
\mu=\frac{m \mathbf{v}_{\perp}^{2}}{2|\mathbf{B}|}=\frac{W_{\perp}}{|\mathbf{B}|} \quad \text { or } \quad \boldsymbol{\mu}=-\frac{W_{\perp}}{\mathbf{B}^{2}} \mathbf{B} \tag{or}
\end{equation*}
$$

electric field drift (or ExB drift) - derivation

constant and spatially uniform E and B fields. motion along the magnetic field

- equation of motion (non-relativistic)

$$
m \frac{\mathrm{~d} v_{\|}}{\mathrm{d} t}=q E_{\|}
$$

- solution

$$
v_{\|}=\frac{q E_{\|}}{m} t+v_{\| 0} \quad x_{\|}=\frac{q E_{\|}}{m} \frac{t^{2}}{2}+v_{\| 0} t+x_{\| 0}
$$

motion across magnetic field

- equation of motion

$$
m \frac{\mathrm{~d} v_{\perp}}{\mathrm{d} t}=q(\mathbf{E}_{\perp}+\underbrace{\mathbf{v}_{\perp}} \times \mathbf{B})
$$

- electric and magnetic components perpendicular to B
- it is possible to balance both components
balance electric and magnetic forces

$$
m \frac{\mathrm{~d} v_{\perp}}{\mathrm{d} t}=\mathbf{E}_{\perp}+\mathbf{v}_{\perp} \times \mathbf{B}=0
$$

- particle travels with constant perpendicular velocity.
- cross product with \mathbf{B} gives

$$
\mathbf{v}_{\perp} \equiv \mathbf{v}_{E}=\frac{\mathbf{E}_{\perp} \times \mathbf{B}}{\mathbf{B}^{2}}
$$

full solution

- writing

$$
\mathbf{v}_{\perp}=\mathbf{v}_{1}+\mathbf{v}_{E}
$$

- gives for \mathbf{v}_{1}

$$
m \frac{\mathrm{~d} \mathbf{v}_{1}}{\mathrm{~d} t}=q \mathbf{v}_{1} \times \mathbf{B}
$$

- cyclotron motion plus a drift velocity

electric field drift (or ExB drift) - simulation

B field out of the plane; E in the y direction; both particles have the same mass

electric field drift (or ExB drift) - simulation

B field out of the plane; E in the y direction; positive charge is more massive than negative charge

electric field drift (or ExB drift) - physical picture

- as a positive charge spirals in the magnetic field its energy changes due to the electric field
-the charge moves faster in the upper part of the trajectory
-curvature is smaller in the upper part of the trajectory than in the lower part and the particle drifts
-a negative charge spirals in the opposite direction
- radius of curvature is larger in the bottom part of the trajectory. drift is in the same direction

ExB drift and the de Hoffman-Teller frame

moving across a magnetic field gives rise to an electric field:

$$
\begin{aligned}
\mathbf{E}_{\perp}^{\prime} & =\gamma\left(\mathbf{E}_{\perp}+\mathbf{v} \times \mathbf{B}\right) \\
& =\gamma\left(\mathbf{E}_{\perp}+\frac{\mathbf{E}_{\perp} \times \mathbf{B}}{\mathbf{B}^{2}} \times \mathbf{B}\right) \\
& =\gamma\left(\mathbf{E}_{\perp}-\mathbf{E}_{\perp} \frac{\mathbf{B}^{2}}{\mathbf{B}^{2}}\right)=0
\end{aligned}
$$

For $\mathbf{v}=\mathbf{v}_{E}$ the equation above is zero, i.e. there is no electric field when moving with the drift velocity. Particles see a magnetic field and move accordingly.

electric field drift (or ExB drift) - significant features

-in a neutral plasma, since positive and negative charges drift in the same direction, the ExB drift generates no current

- no work is done on average on either (positively or negatively charged) particle because the electric field is perpendicular to the drift velocity

external force (e.g. gravity) drift

derivation

- equation of motion (non-relativistic)

$$
m \frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} t}=\mathbf{F}+q \mathbf{v} \times \mathbf{B}
$$

- make substitution $\mathbf{E}=\mathbf{F} / q$

$$
\mathbf{v}_{F}=\frac{1}{q} \frac{\mathbf{F} \times \mathbf{B}}{\mathbf{B}^{2}}
$$

- motion is the cyclotron trajectory plus the drift

important features

- drift depends on the sign of the charge of the particle
- an external force acting on a neutral cloud will cause particles with opposite charges to drift in opposite directions.
- the drift motion now gives rise to a current in the plasma

time-varying electric field - polarisation drift

initial assumptions

- spatially uniform E and B fields.
- the direction of E is constant in space but magnitude varies in time
- consider $\mathbf{E} \cdot \mathbf{B}=0$
- electric field varies little in a Larmor rotation $\frac{1}{\mathbf{E}} \frac{1}{\omega_{c}} \frac{\mathrm{~d} \mathbf{E}}{\mathrm{~d} t} \ll 1$
derivation on physical grounds: kinetic energy change
- to first approximation:

$$
\mathbf{v}_{\perp}=\mathbf{v}_{\text {Larmor }}+\frac{\mathbf{E}(t) \times \mathbf{B}}{\mathbf{B}^{2}}
$$

- kinetic energy change averaged over the Larmor period

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{m}{2} \mathbf{v}_{\perp}^{2}\right)=m \mathbf{v}_{E} \frac{\mathrm{~d} \mathbf{v}_{E}}{\mathrm{~d} t}=\frac{m}{\mathbf{B}^{2}} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\mathbf{E}^{2}}{2}\right)
$$

derivation on physical grounds: energy balance

- energy must be supplied by E field

$$
q v_{\| E} \mathbf{E}=\frac{m}{\mathbf{B}^{2}} \mathbf{E} \frac{\mathrm{~d} \mathbf{E}}{\mathrm{~d} t} \Rightarrow v_{\| E}=\frac{m}{q \mathbf{B}^{2}} \frac{\mathrm{~d} \mathbf{E}}{\mathrm{~d} t}
$$

time-varying electric field - polarisation drift

derivation on physical grounds: inertial forces

- ExB drift changes with time. Acceleration is:

charge distribution due to polarisation drift

positive charges move in direction of \mathbf{E}. negative charges move in the opposite to \mathbf{E}

$$
\mathbf{a}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\mathbf{E}(t) \times \mathbf{B}}{\mathbf{B}^{2}}\right)
$$

- Force in the guiding centre frame is $\mathbf{F}=-m \mathbf{a}$

$$
\mathbf{F}=-m \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\mathbf{E}(t) \times \mathbf{B}}{\mathbf{B}^{2}}\right)
$$

- Treat \mathbf{F} as an external force which induces a drift:

$$
\mathbf{v}_{\| E}=\mathbf{v}_{D E}=\frac{m}{q \mathbf{B}^{2}} \frac{\mathrm{~d} \mathbf{E}}{\mathrm{~d} t}
$$

time-varying magnetic field - magnetic moment

initial assumptions

- spatially uniform B field with amplitude varying in time
- there will be an E field set up because B varies with time
- this will give rise to ExB and polarisation drifts
- we are interested in the fact that E has a curl and will hence do work on a circulating charge
- lets imagine that we subtract the ExB drift
work done by electric field in a closed orbit
- charge perpendicular energy of the particle

$$
\delta W_{\perp}=q \int \mathbf{E} \cdot \mathrm{~d} l
$$

- around a closed orbit

$$
\oint \mathbf{E} \cdot \mathrm{d} l=\int \nabla \times \mathbf{E} \cdot \mathrm{d} \mathbf{A}=-\int \frac{\partial \mathbf{B}}{\partial t} \cdot \mathrm{~d} \mathbf{A}
$$

flux of $\partial \mathrm{B} / \partial t$ through the orbit

- since $\partial \mathbf{B} / \partial t$ is essentially constant inside the orbit

$$
-\int \frac{\partial \mathbf{B}}{\partial t} \cdot \mathrm{~d} \mathbf{A}=(\pm) \pi r_{c}^{2} \frac{\partial \mathbf{B}}{\partial t}
$$

- we only need the plus sign because dA is always antiparallel to B

time-varying magnetic field - magnetic moment

initial assumptions

- spatially uniform B field with amplitude varying in time
- there will be an E field set up because B varies with time
- this will give rise to ExB and polarisation drifts
- we are interested in the fact that E has a curl and will hence do work on a circulating charge
- lets imagine that we subtract the ExB drift
work done by electric field in a closed orbit
- charge perpendicular energy of the particle

$$
\delta W_{\perp}=|q| \pi r_{c}^{2} \frac{\partial B_{z}}{\partial t}
$$

- or

$$
\delta W_{\perp}=W_{\perp} \frac{2 \pi}{\omega_{c} B} \frac{\partial B_{z}}{\partial t}
$$

- this means that

$$
\frac{W_{\perp}}{B_{z}}=\mu=\mathrm{constant}
$$

drifts in non-uniform magnetic fields

∇ B tensor

- consider slow variations of the magnetic field within the cyclotron radius

$$
\frac{|\nabla \mathbf{B}| r_{c}}{|\mathbf{B}|} \ll 1
$$

-general approach consists in finding the particle motion as a perturbation from the spatially uniform case

$$
\mathbf{B}(\mathbf{r}+\boldsymbol{\rho})=\mathbf{B}(\mathbf{r})+\rho \cdot \nabla \mathbf{B}(\mathbf{r})
$$

-Taylor expand the magnetic field about some \mathbf{r} (which, in general, might depend on time)

non-uniform magnetic fields - diagonal terms

-these terms are not all independent since $\nabla \cdot \mathbf{B}=0$
-coordinate system where $\mathbf{r}=\mathbf{0}$ and $\mathbf{B}(\mathbf{0})=B_{0} \mathbf{e}_{z}$
-neglect all off diagonal terms. then:

$$
\left\{\begin{aligned}
B_{z} & =B_{0}+\left(\frac{\partial \mathbf{B}_{z}}{\partial z}\right)_{0} z \\
B_{y} & =\left(\frac{\partial \mathbf{B}_{y}}{\partial y}\right)_{0} y \\
B_{x} & =\left(\frac{\partial \mathbf{B}_{x}}{\partial x}\right)_{0} x
\end{aligned}\right.
$$

∇ B tensor

$$
\left[\begin{array}{lll}
\frac{\partial B_{x}}{\partial x} & \frac{\partial B_{x}}{\partial y} & \frac{\partial B_{x}}{\partial z} \\
\frac{\partial B_{y}}{\partial x} & \frac{\partial B_{y}}{\partial y} & \frac{\partial B_{y}}{\partial z} \\
\frac{\partial B_{z}}{\partial x} & \frac{\partial B_{z}}{\partial y} & \frac{\partial B_{z}}{\partial z}
\end{array}\right]
$$

(div)(conv)erging lines of force: force on a magnetic dipole

-because $\nabla \cdot \mathbf{B}=0$ we can write

$$
\frac{\partial B_{z}}{\partial z}=-\left[\left(\frac{\partial B_{x}}{\partial x}\right)_{0}+\left(\frac{\partial B_{y}}{\partial y}\right)_{0}\right]
$$

-or

$$
B_{z}=B_{0}-\left[\left(\frac{\partial B_{x}}{\partial x}\right)_{0}+\left(\frac{\partial B_{y}}{\partial y}\right)_{0}\right] z
$$

-consider particle moving in z along with the field lines. particle sees B field varying in time
-the temporal variation will be slow as long as the spatial variation is slowly varying in space (assume that particle is not very fast)
conservation of magnetic moment
energy conservation
-conservation of magnetic moment:

$$
W_{\perp}=|B| \mu=|B| \frac{W_{\perp 0}}{B_{0}}
$$

-since magnetic field does no work

$$
W_{\|}=W-|B| \mu=W_{\| 0}+W_{\perp 0}-|B| \mu
$$

-parallel energy of particle must change
-conservation of energy differential form is the force on a magnetic dipole (minus sign is because the dipole is diamagnetic)

$$
m \frac{\mathrm{~d} v_{\|}}{\mathrm{d} t}=-\mu \frac{\mathrm{d}|B|}{\mathrm{d} z}
$$

example: magnetic mirror

-recall the expression for the longitudinal energy

$$
W_{\|}=W-|B| \mu=W_{\| 0}+W_{\perp 0}-|B| \mu
$$

-when IBI increases $\mathrm{W}_{\|}$decreases and vice versa.
-thus charged particles traveling along z can be reflected due to the convergence of magnetic field lines which increases B close to the edges
-Conservation of energy + conservation of magnetic moment give the critical value for the magnetic field ratio to ensure reflection as a function of the particle transverse velocity:

$$
\frac{B_{0}}{B_{R}}=\frac{\mathbf{v}_{\perp}^{2}}{\mathbf{v}_{\perp 0}^{2}+\mathbf{v}_{\| 0}^{2}}
$$

example: magnetic mirror

-the magnetic field for reflection is higher for smaller transverse velocities
-defining the pitch angle

$$
\tan (\theta)=\frac{\left|\mathbf{v}_{\perp}\right|}{\left|v_{\|}\right|}
$$

-the reflection point becomes

$$
\frac{B_{0}}{B_{R}}=\sin ^{2}(\theta)
$$

-thus, reflection occurs for angles larger than

$$
\theta_{c} \geq \operatorname{asin}\left[\left(\frac{B_{0}}{B_{\max }}\right)^{1 / 2}\right]
$$

-if the mirror is moving particles can accelerate and gain energy by a process called Fermi acceleration

magnetic mirror on earth

magnetic mirror machine

Basic Magnetic Mirror Machine:

-designed to confine the plasma in fusion devices
-Edward Teller showed, however, that this configuration is inherently unstable
-motivated the design of different magnetic field configurations to confine plasma in fusion devices

non-uniform B fields - curvature of the lines of force

- equation for the lines of force (we can consider only one of the terms by suitably shifting the axis)

$$
\frac{\mathrm{d} x}{\mathrm{~d} z}=\frac{B_{x}}{B_{z}}=\frac{1}{B_{0}}\left(\frac{\partial B_{x}}{\partial z}\right)_{0} z
$$

-or

$$
x=x_{0}+\frac{z^{2}}{2 B_{0}}\left(\frac{\partial B_{x}}{\partial z}\right)_{0}
$$

-for small z the lines of force are a segment of a circle (see image next slide)

non-uniform B field - curvature of lines of force

- local approximate curved B field line by a small segment of a circle.
- assume that magnitude of B field is constant $\left(\mathrm{B}_{0}\right)$, but the direction varies.
- we can thus write (R is radius of curvature):

$$
\frac{B_{x}}{B_{0}}=\tan (\theta) \simeq \theta \simeq \frac{z}{R}
$$

- for small z the magnetic field is:

$$
B_{x}=z\left(\frac{\partial B_{x}}{\partial z}\right) \quad \text { radius of curvature is } \quad R=\frac{B_{0}}{\left(\frac{\partial B_{x}}{\partial z}\right)_{0}}
$$

non-uniform B field - curvature of lines of force

- equation of motion in cylindrical coordinates
$m\left(\mathrm{e}_{r}\left[\frac{\mathrm{~d} v_{r}}{\mathrm{~d} t}-\frac{v_{\theta}^{2}}{r}\right]+\mathbf{e}_{\theta}\left[\frac{\mathrm{d} v_{\theta}}{\mathrm{d} t}+\frac{v_{\theta} v_{r}}{r}+\right]+\mathbf{e}_{z} \frac{\mathrm{~d} v_{z}}{\mathrm{~d} t}\right)=q B_{0}\left(-\mathbf{e}_{r} v_{z}+\mathbf{e}_{z} v_{r}\right)$
- the component along \mathbf{e}_{θ} gives conservation of angular momentum. gives rise to small variations of v_{θ} during cyclotron motion which we neglect.

- the other two equations are for the gyration of a particle about an uniform B field subject to an external force with magnitude

$$
F_{r}=\frac{m v_{\theta}^{2}}{R}
$$

- there is thus a drift parallel to the lines of force: $v_{z}=\frac{m v_{\theta}^{2}}{R q B_{0}}=\frac{2 W_{\|}}{R q B_{0}}$
or $\quad \mathbf{v}_{d}=\frac{1}{q} \frac{\mathbf{F}_{r} \times \mathbf{B}}{\mathbf{B}^{2}}=\frac{m v_{\|}^{2}}{q \mathbf{B}^{2}} \frac{\mathbf{e}_{r} \times \mathbf{B}}{R}$

non-uniform B fields - $\nabla \mathbf{B}$ drift

-these terms only mean that the strength of the B field varies in the (x, y) plane
-by choosing the coordinate system, we can consider just one of the terms
-assume that $\partial B_{z} / \partial y=0$

$$
\left[\begin{array}{lll}
\frac{\partial B_{x}}{\partial x} & \frac{\partial B_{x}}{\partial y} & \frac{\partial B_{x}}{\partial z} \\
\frac{\partial B_{y}}{\partial x} & \frac{\partial B_{y}}{\partial y} & \frac{\partial B_{y}}{\partial z} \\
\frac{\partial B_{z}}{\partial x} & \frac{\partial B_{z}}{\partial y} & \frac{\partial B_{z}}{\partial z}
\end{array}\right]
$$

non-uniform \mathbf{B} field $-\nabla \mathbf{B}$ drift

physical picture

- charged particle turning in a non-uniform magnetic field experiences a drift similar to the ExB

$$
r_{c}=\frac{m\left|\mathbf{v}_{\perp}\right|}{|q| \mathbf{B}}
$$

- Larmor radius is larger in the part of the trajectory where B is smaller (bottom half)
- negative charges drift to the left and positive charges to the right

non-uniform \mathbf{B} field - $\nabla \mathbf{B}$ drift

derivation

- the average force along the magnetic field gradient over one cyclotron period must be zero

$$
\int_{z 1}^{z 2} F_{x} d t=0 \quad F_{x}=q v_{y} B_{z}(x)=e v_{y}\left[B_{0}+x\left(\frac{\partial B_{z}}{\partial x_{0}}\right)\right]
$$

- thus

$$
\delta y=y_{2}-y_{1}=-\frac{1}{B_{0}}\left(\frac{\partial B_{z}}{\partial B_{x}}\right) \int_{t 1}^{t 2} x v_{y} d t
$$

non-uniform \mathbf{B} field - $\nabla \mathbf{B}$ drift

derivation

- integral over one period is simply $\pm \pi r_{c}^{2}$ (positive for electrons and negative for ions)
- hence

$$
\delta_{y}=y_{2}-y_{1}= \pm \frac{1}{B_{0}}\left(\frac{\partial B_{z}}{\partial x}\right) \pi r_{c}^{2}
$$

- dividing δy by the cyclotron period $2 \pi / \omega_{c}$:

$$
v_{y}=\frac{1}{q} \frac{m \mathbf{v}_{\perp}^{2}}{2 B_{0}^{2}} \frac{\partial B_{z}}{\partial x} \quad \Rightarrow v_{y}=\frac{q}{|q|} \frac{m \mathbf{v}_{\perp}^{2}}{2 B_{0}^{2}} \frac{\mathbf{B} \times \nabla \mathbf{B}}{\mathbf{B}^{2}}
$$

Grad B drift - simulation

B field out of the plane; B field is stronger for smaller values of y

