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How to study plasmas

• single particle motion
– simple but powerful analysis
– enables to investigate key waves and instabilities in plasma physics 

• plasma kinetic equations
– general approach 
– can be solved using computer programs

• fluid equations
– plasma waves and instabilities
– interaction with electromagnetic waves
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why studying single particle motions is important?

= (1.6 × 10−19C)2

4π × 8.9 × 10−12 Farad/m × 10−6 m

•interactions between individual pairs of charged particles is small

•fields can become large when many particles interact, and lead to plasma oscillations

•fields from many particles are smooth with small fluctuations on top

•small fluctuations lead to collisions

•macroscopic smoothed fields give rise to collective motions of the plasma

•if we can neglect collisions we can treat the plasma as a collection of charged particles each moving in 
smoothed fields (self-consistent + external)

•much insights can be gained by analysing the single particle motion

•further analysis (not to be covered in our course): make fields self-consistent with particle motion
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energy equation

= (1.6 × 10−19C)2

4π × 8.9 × 10−12 Farad/m × 10−6 m

m
dv
dt

= q(E + v × B)

• equation of motion (non-relativistic) • dot product with �v

m
dv
dt

⋅ v = 1
2 m

dv2

dt

m
dv
dt

⋅ v = 1
2 m

dv2

dt

(v × B) ⋅ v = 0
} 1

2 m
dv2

dt
= qE ⋅ v

work done by electric field in a charged particle

energy conservation law

• integration over particle orbit

Δ ( 1
2 mv2) = ∫ qE ⋅ vdt = ∫ qE ⋅ dl

• if �E = − ∇Φ

( 1
2 mv2) + qΦ = constant

kinetic energy gain

} }

work done by electric field conservation of kinetic plus potential energy 

}

Dawson, pp 93-98
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motion in uniform magnetic field - cyclotron motion

= (1.6 × 10−19C)2

4π × 8.9 × 10−12 Farad/m × 10−6 m

• velocity component along magnetic field 
does not change (� )

• magnitude of velocity component 
perpendicular to magnetic field does not 
change, as just showed (� )

• motion is circular about the magnetic field

• radius of circular orbit

• angular frequency

v∥ = constant

v2
⊥ = constant

m
dv
dt

⋅ v = 1
2 m

dv2

dt

m
v2

⊥
rc

= |q| |v⊥ |B ⇔ rc = m |v⊥ |
|q|B

ωc = |q|B
m

B out of the plane

�Fc = mv2
⊥

r

�FB = − |q| |v⊥ |B

�rc = m |v⊥ |
|q|B

Dawson, pp 93-98
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• defining

• leads to

• integration yields

• where

equation of motion

cyclotron motion - formal derivation

= (1.6 × 10−19C)2

4π × 8.9 × 10−12 Farad/m × 10−6 m

m
dv
dt

⋅ v = 1
2 m

dv2

dt

dvx

dt
= ωcvy

• assumptions
– B is along z
– v is along x and y

• from equation of motion

ωc =
qBz

m

dvy

dt
= − ωcvx

integration of equations of motion

w = vx + ivy

dw
dt

= − iωcw

w = w0 exp (− iωct) ⇒ z = x + iy = i
w0
ωc

exp (− iωct) + z0

z0 = x0 + iy0 − i
w0
ωc

Dawson, pp 93-98



Jorge Vieira | IST 2019

cyclotron motion - formal derivation

= (1.6 × 10−19C)2

4π × 8.9 × 10−12 Farad/m × 10−6 m

m
dv
dt

⋅ v = 1
2 m

dv2

dt

x

iy

z|w |
ωc ωc

motion in complex plane direction of rotation depends on charge

electrons

ions
B field

Dawson, pp 93-98
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cyclotron motion - simulation

= (1.6 × 10−19C)2

4π × 8.9 × 10−12 Farad/m × 10−6 m

m
dv
dt

⋅ v = 1
2 m

dv2

dt

B field out of the plane; both particles have the same mass

Dawson, pp 93-98
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cyclotron motion - simulation

= (1.6 × 10−19C)2

4π × 8.9 × 10−12 Farad/m × 10−6 m

m
dv
dt

⋅ v = 1
2 m

dv2

dt

plasma is a diamagnetic medium:
the motion of the charges produces a current that induces a magnetic field into the plane

B field out of the plane; positive charge is more massive than negative charge

Dawson, pp 93-98
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magnetic moment

= (1.6 × 10−19C)2

4π × 8.9 × 10−12 Farad/m × 10−6 m

m
dv
dt

⋅ v = 1
2 m

dv2

dt

• a current loop (I is the average current, A is the area of the loop) has a dipole moment

• average current is the average charge per unit time which passes a point in the orbit

• area of the loop is

• thus

μ = IA

I = q
τ

= qωc

2π

A = πr2
c = π

m2v2
⊥

q2B2

μ = mv2
⊥

2 |B |
= W⊥

|B |
or μ = − W⊥

B2 B

Dawson, p 98
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electric field drift (or ExB drift) - derivation

= (1.6 × 10−19C)2

4π × 8.9 × 10−12 Farad/m × 10−6 m

m
dv
dt

⋅ v = 1
2 m

dv2

dt

m
dv∥

dt
= qE∥

• equation of motion (non-relativistic) • solution

constant and spatially uniform E and B fields. motion along the magnetic field

v∥ =
qE∥

m
t + v∥0 x∥ =

qE∥

m
t2

2 + v∥0t + x∥0

motion across magnetic field

}m
dv⊥
dt

= q(E⊥ + v⊥ × B)
• equation of motion

• electric and magnetic components 
perpendicular to B 

• it is possible to balance both 
components

m
dv⊥
dt

= E⊥ + v⊥ × B = 0

balance electric and magnetic forces

• particle travels with constant 
perpendicular velocity.

• cross product with �  givesB

v⊥ ≡vE = E⊥ × B
B2

v⊥ = v1 + vE

• writing

• gives for �v1

m
dv1
dt

= qv1 × B

• cyclotron motion plus a 
drift velocity

full solution

Dawson, p 102-106
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electric field drift (or ExB drift) - simulation

= (1.6 × 10−19C)2

4π × 8.9 × 10−12 Farad/m × 10−6 m

m
dv
dt

⋅ v = 1
2 m

dv2

dt

B field out of the plane; E in the y direction; both particles have the same mass

Dawson, p 102-106
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electric field drift (or ExB drift) - simulation

= (1.6 × 10−19C)2

4π × 8.9 × 10−12 Farad/m × 10−6 m

m
dv
dt

⋅ v = 1
2 m

dv2

dt

B field out of the plane; E in the y direction; positive charge is more massive than negative charge

Dawson, p 102-106
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electric field drift (or ExB drift) - physical picture

= (1.6 × 10−19C)2

4π × 8.9 × 10−12 Farad/m × 10−6 m

m
dv
dt

⋅ v = 1
2 m

dv2

dt

•as a positive charge spirals in the magnetic field its energy changes due to the electric field

•the charge moves faster in the upper part of the trajectory

•curvature is smaller in the upper part of the trajectory than in the lower part and the particle drifts

•a negative charge spirals in the opposite direction

•radius of curvature is larger in the bottom part of the trajectory. drift is in the same direction
Dawson, p 102-106
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ExB drift and the de Hoffman-Teller frame

= (1.6 × 10−19C)2

4π × 8.9 × 10−12 Farad/m × 10−6 m

m
dv
dt

⋅ v = 1
2 m

dv2

dt

moving across a magnetic field gives rise to an electric field:

E′�⊥ = γ (E⊥ + v × B)

= γ (E⊥ + E⊥ × B
B2 × B)

= γ (E⊥ − E⊥
B2

B2 ) = 0

For �  the equation above is zero, i.e. there is no electric field when moving with the drift velocity. 
Particles see a magnetic field and move accordingly.

v = vE

Dawson, p 102-106
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electric field drift (or ExB drift) - significant features

= (1.6 × 10−19C)2

4π × 8.9 × 10−12 Farad/m × 10−6 m

m
dv
dt

⋅ v = 1
2 m

dv2

dt

•in a neutral plasma, since positive and negative charges drift in the same direction, the ExB drift generates no 
current

• no work is done on average on either (positively or negatively charged) particle because the electric field 
is perpendicular to the drift velocity

Dawson, p 102-106
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external force (e.g. gravity) drift

= (1.6 × 10−19C)2

4π × 8.9 × 10−12 Farad/m × 10−6 m

m
dv
dt

⋅ v = 1
2 m

dv2

dt

m
dv
dt

= F + qv × B

• equation of motion (non-relativistic) • make substitution �E = F/q

important features

derivation

vF = 1
q

F × B
B2

• motion is the cyclotron trajectory plus the drift

• drift depends on the sign of the charge of the particle

• an external force acting on a neutral cloud will cause particles with opposite charges to drift in 
opposite directions.

• the drift motion now gives rise to a current in the plasma

Dawson, p 106-107
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time-varying electric field - polarisation drift

= (1.6 × 10−19C)2

4π × 8.9 × 10−12 Farad/m × 10−6 m

m
dv
dt

⋅ v = 1
2 m

dv2

dt

• spatially uniform E and B fields. 
• the direction of E is constant in space but magnitude varies in time
• consider �
• electric field varies little in a Larmor rotation

E ⋅ B = 0 1
E

1
ωc

dE
dt

≪ 1

initial assumptions

derivation on physical grounds: kinetic energy change

• to first approximation:

v⊥ = vLarmor + E(t) × B
B2

• kinetic energy change averaged over the Larmor period

d
dt ( m

2 v2
⊥ ) = mvE

dvE

dt
= m

B2
d
dt ( E2

2 )

derivation on physical grounds: energy balance

• energy must be supplied by E field

qv∥EE = m
B2 E dE

dt
⇒ v∥E = m

qB2
dE
dt

m
qB2

dE
dt

Dawson, pp 107-110
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time-varying electric field - polarisation drift

= (1.6 × 10−19C)2

4π × 8.9 × 10−12 Farad/m × 10−6 m

m
dv
dt

⋅ v = 1
2 m

dv2

dt

derivation on physical grounds: inertial forces

• ExB drift changes with time. Acceleration is:

• Force in the guiding centre frame is �

• Treat �  as an external force which induces a 
drift:

F = − ma

F

a = d
dt ( E(t) × B

B2 )

v∥E = vDE = m
qB2

dE
dt

F = − m
d
dt ( E(t) × B

B2 )

charge distribution due to polarisation drift

positive charges move in direction of E. 
negative charges move in the opposite to E

E(t)

x B

+

-

positive charges

negative charges

Dawson, pp 107-110
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time-varying magnetic field - magnetic moment

= (1.6 × 10−19C)2

4π × 8.9 × 10−12 Farad/m × 10−6 m

m
dv
dt

⋅ v = 1
2 m

dv2

dt

• spatially uniform B field with amplitude varying in time
• there will be an E field set up because B varies with time
• this will give rise to ExB and polarisation drifts
• we are interested in the fact that E has a curl and will hence do work on a circulating charge
• lets imagine that we subtract the ExB drift

initial assumptions

work done by electric field in a closed orbit

• charge perpendicular energy of the particle

δW⊥ = q∫ E ⋅ dl

• around a closed orbit

flux of �  through the orbit∂B/∂t

• since �  is essentially constant inside 
the orbit

• we only need the plus sign because dA is 
always antiparallel to B

∂B/∂t

∮ E ⋅ dl = ∫ ∇ × E ⋅ dA = − ∫ ∂B
∂t

⋅ dA

− ∫ ∂B
∂t

⋅ dA = ( ± )πr2
c

∂B
∂t

Dawson, pp 114-116
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time-varying magnetic field - magnetic moment

= (1.6 × 10−19C)2

4π × 8.9 × 10−12 Farad/m × 10−6 m

m
dv
dt

⋅ v = 1
2 m

dv2

dt

• spatially uniform B field with amplitude varying in time
• there will be an E field set up because B varies with time
• this will give rise to ExB and polarisation drifts
• we are interested in the fact that E has a curl and will hence do work on a circulating charge
• lets imagine that we subtract the ExB drift

initial assumptions

work done by electric field in a closed orbit

• charge perpendicular energy of the particle

δW⊥ = |q|πr2
c

∂Bz

∂t
• or

conservation of magnetic moment

• for a single period

• this means that
δW⊥ = W⊥

2π
ωcB

∂Bz

∂t

δW⊥
W⊥

=
δBz

Bz
⇔ δ ( W⊥

Bz ) = 0

W⊥
Bz

= μ = constant

Dawson, pp 114-116
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drifts in non-uniform magnetic fields

m
dv
dt

⋅ v = 1
2 m

dv2

dt

•consider slow variations of the magnetic field within 
the cyclotron radius

•general approach consists in finding the particle 
motion as a perturbation from the spatially uniform 
case

•Taylor expand the magnetic field about some �  
(which, in general, might depend on time)

r

|∇B |rc

|B |
≪ 1

B(r + ρ) = B(r) + ρ ⋅ ∇B(r)

∂Bx

∂x
∂Bx

∂y
∂Bx

∂z
∂By

∂x
∂By

∂y
∂By

∂z
∂Bz

∂x
∂Bz

∂y
∂Bz

∂z

�  tensor ∇B

Dawson, pp 116-117
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non-uniform magnetic fields - diagonal terms

m
dv
dt

⋅ v = 1
2 m

dv2

dt

•these terms are not all independent since �

•coordinate system where �  and �

•neglect all off diagonal terms. then:

∇ ⋅ B = 0

r = 0 B(0) = B0ez

Bz = B0 + ( ∂Bz

∂z )
0

z

By = ( ∂By

∂y )
0

y

Bx = ( ∂Bx

∂x )0
x

∂Bx

∂x
∂Bx

∂y
∂Bx

∂z
∂By

∂x
∂By

∂y
∂By

∂z
∂Bz

∂x
∂Bz

∂y
∂Bz

∂z

�  tensor ∇B

Dawson, pp 117-123
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(div)(conv)erging lines of force: force on a magnetic dipole

m
dv
dt

⋅ v = 1
2 m

dv2

dt

•because �  we can write

•or

•consider particle moving in z along with the field 
lines. particle sees B field varying in time

•the temporal variation will be slow as long as the 
spatial variation is slowly varying in space 
(assume that particle is not very fast)

∇ ⋅ B = 0

∂Bz

∂z
= − ( ∂Bx

∂x )
0

+ (
∂By

∂y )
0

Bz = B0 − ( ∂Bx

∂x )
0

+ (
∂By

∂y )
0

z

conservation of magnetic moment

energy conservation

•conservation of magnetic moment:

•since magnetic field does no work

•parallel energy of particle must change

•conservation of energy differential form is the force 
on a magnetic dipole (minus sign is because the 
dipole is diamagnetic)

W⊥ = |B |μ = |B |
W⊥ 0
B0

W∥ = W − |B |μ = W∥0 + W⊥ 0 − |B |μ

m
dv∥

dt
= − μ

d |B |
dz

Dawson, pp 117-123
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•recall the expression for the longitudinal energy

•when |B| increases W|| decreases and vice versa.

•thus charged particles traveling along z can be 
reflected due to the convergence of magnetic field 
lines which increases B close to the edges

•Conservation of energy + conservation of magnetic 
moment give the critical value for the magnetic field 
ratio to ensure reflection as a function of the particle 
transverse velocity: 

example: magnetic mirror

m
dv
dt

⋅ v = 1
2 m

dv2

dt

W∥ = W − |B |μ = W∥0 + W⊥ 0 − |B |μ

B0
BR

= v2
⊥

v2
⊥ 0 + v2

∥0

B0 BR reflection point
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•the magnetic field for reflection is higher for smaller 
transverse velocities 

•defining the pitch angle

•the reflection point becomes

•thus, reflection occurs for angles larger than

example: magnetic mirror

m
dv
dt

⋅ v = 1
2 m

dv2

dt

•if the mirror is moving particles can accelerate and 
gain energy by a process called Fermi acceleration

B0 BR reflection point

tan(θ) = |v⊥ |
|v∥ |

B0
BR

= sin2(θ)

θc ≥ asin ( B0
Bmax )

1/2
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magnetic mirror on earth

m
dv
dt

⋅ v = 1
2 m

dv2

dt
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magnetic mirror machine 

m
dv
dt

⋅ v = 1
2 m

dv2

dt

•designed to confine the plasma in fusion devices
•Edward Teller showed, however, that this configuration is inherently unstable
•motivated the design of different magnetic field configurations to confine plasma in fusion devices
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non-uniform B fields - curvature of the lines of force

m
dv
dt

⋅ v = 1
2 m

dv2

dt

•equation for the lines of force (we can consider only 
one of the terms by suitably shifting the axis)

•or

•for small z the lines of force are a segment of a circle 
(see image next slide)

dx
dz

= Bx

Bz
= 1

B0 ( ∂Bx

∂z )
0

z ∂Bx

∂x
∂Bx

∂y
∂Bx

∂z
∂By

∂x
∂By

∂y
∂By

∂z
∂Bz

∂x
∂Bz

∂y
∂Bz

∂z

x = x0 + z2

2B0 ( ∂Bx

∂z )
0

Dawson, pp 123-127
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B field lines

θ

z

x

�R

m
dv
dt

⋅ v = 1
2 m

dv2

dt

• local approximate curved B field line by a 
small segment of a circle.

• assume that magnitude of B field is 
constant (B0), but the direction varies.

• we can thus write (R is radius of curvature):

• for small z the magnetic field is:

Bx

B0
= tan (θ) ≃ θ ≃ z

R

Bx = z ( ∂Bx

∂z )

non-uniform B field - curvature of lines of force

radius of curvature is R = B0

( ∂Bx

∂z )0
Dawson, pp 123-127
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θ = ωt

m
dv
dt

⋅ v = 1
2 m

dv2

dt

• equation of motion in cylindrical coordinates

• the component along �  gives conservation of angular 
momentum. gives rise to small variations of �  during cyclotron 
motion which we neglect.

• the other two equations are for the gyration of a particle about an 
uniform B field subject to an external force with magnitude

• there is thus a drift parallel to the lines of force:

eθ
vθ

non-uniform B field - curvature of lines of force

�er

�eθ

�  of cylindrical coordinates 
is out of the plane

ez

m er [ dvr

dt
− v2

θ

r ] + eθ [ dvθ

dt
+ vθvr

r
+ ] + ez

dvz

dt
= qB0 (−ervz + ezvr)

Fr = mv2
θ

R

vz = mv2
θ

RqB0
=

2W∥

RqB0
or vd = 1

q
Fr × B

B2 =
mv2

∥

qB2
er × B

R
Dawson, pp 123-127
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non-uniform B fields -  drift∇B

m
dv
dt

⋅ v = 1
2 m

dv2

dt

•these terms only mean that the strength of the B 
field varies in the (x,y) plane

•by choosing the coordinate system, we can consider 
just one of the terms 

•assume that �∂Bz /∂y = 0

∂Bx

∂x
∂Bx

∂y
∂Bx

∂z
∂By

∂x
∂By

∂y
∂By

∂z
∂Bz

∂x
∂Bz

∂y
∂Bz

∂z

Dawson, pp 127-129
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non-uniform B field -  drift∇B

m
dv
dt

⋅ v = 1
2 m

dv2

dt

physical picture

• charged particle turning in a non-uniform magnetic field experiences a drift similar to the ExB

• Larmor radius is larger in the part of the trajectory where B is smaller (bottom half)
• negative charges drift to the left and positive charges to the right

rc = m |v⊥ |
|q|B

x

z

Dawson, pp 127-129
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non-uniform B field -  drift∇B

m
dv
dt

⋅ v = 1
2 m

dv2

dt

derivation

• the average force along the magnetic field gradient over one cyclotron period must be zero

• thus

∫
z2

z1
Fxdt = 0 Fx = qvyBz(x) = evy [B0 + x (∂Bz

∂x 0)]

δy = y2 − y1 = − 1
B0 (

∂Bz

∂Bx )∫
t2

t1
xvydt

x

z

Dawson, pp 127-129
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non-uniform B field -  drift∇B

m
dv
dt

⋅ v = 1
2 m

dv2

dt

derivation

• integral over one period is simply �  (positive for electrons and negative for ions)
• hence

• dividing �  by the cyclotron period  � :

± πr2
c

δy 2π/ωc

δy = y2 − y1 = ± 1
B0 ( ∂Bz

∂x ) πr2
c

vy = q
|q|

mv2
⊥

2B2
0

B × ∇B
B2vy = 1

q
mv2

⊥
2B2

0

∂Bz

∂x

x

z

Dawson, pp 127-129
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Grad B drift - simulation

= (1.6 × 10−19C)2

4π × 8.9 × 10−12 Farad/m × 10−6 m

m
dv
dt

⋅ v = 1
2 m

dv2

dt

B field out of the plane; B field is stronger for smaller values of y

Dawson, pp 127-129


